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Abstract: Effects of structures perpendicular to the reaction coordinate can be described by a model of an upside-down free 
energy profile whose minimum is constrained to coincide with the barrier height along the reaction coordinate and its "intrinsic 
barrier" proportional to that of the profile along the reaction coordinate. The model shows the same quality of semiquantitative 
agreement with experimental results for sigmatropic shifts and cycloadditions as the models based on two-dimensional 
"potential-energy surfaces". The model also predicts semiquantitatively the "tightness" of the transition state for hexadiene 
derivatives, as measured by the secondary kinetic isotope effects. 

"Perpendicular" substituent effects in organic reactivity have 
been popularized in terms of two-dimensional potential energy 
surfaces.1-12 The profile along the reaction coordinate (RC) has 
a maximum (the transition state, TS), which corresponds in a 
Hammond-like fashion13 to variations in its end points (reagents 
and products). Hence stabilizing the products moves the TS closer 
to reactants (and lowers its energy). The profile perpendicular 
to the reaction coordinate has a minimum, responding in a 
"anti-Hammond" manner to perturbations in its asymptotic 
structures. Stabilization of one of the perpendicular structures 
moves the TS toward that structure. Such two profiles are de
picted in Figure 1. An alternative explanation in terms of curve 
crossing14 can also be demonstrated in Figure 1. In this picture 
G3 is an excited electronic configuration of the reactants G1, 
correlating with the ground electronic configuration of the 
products, G2. Similarly G4 correlates with G1. The two curves 
in Figure 1 are generated through the avoided crossing of the 
curves G1G4 and G2G2. 

To make the discussion more concrete, let us consider the 
sigmatropic shifts (Cope rearrangements) of 1,5-hexadiene de
rivatives,11 as shown in Figure 2. The reaction leading from 
reactant (structure 1) to product (structure 2) involves cleavage 
of the 1,3 bond and formation of a new bond between carbons 
1 and 6. If bond breaking precedes bond making the reaction path 
is through the intermediate structure 3. If bond making occurs 
first, the path is via intermediate 4. In the general case, these 
two processes occur simultaneously, and the reaction proceeds in 
a concerted way. This concerted pathway is the RC, n, which 
can assume values between 0 and 1. The TS is called "early" if 
it is close to reactants (small n), and "late" when it is closer to 
products (n larger than l / 2 ) . The perpendicular coordinate, «*, 
may also assume values between 0 and 1. The TS is called "loose" 
if it resembles structure 3, where both bonds are broken. Then 
n* is smaller than 1J2. The TS is called "tight" when it is closer 
to structure 4, where both bonds are made. In terms of Pauling's 
idea15 of bond-order conservation, 2n* is the total bond order, 
whereas n and 1 - n are the fractional bond orders of the new and 
old bonds, respectively. 

In addition to substituent effects which probe the structure of 
the TS, secondary a kinetic isotope effects (KIE) are used.llc 

Deuteration of all or some of the four hydrogens on carbons 1 
and 6 lowers the zero-point energy of products (structure 2 in 
Figure 2) more than that of the reactants (structure 1). Similarly, 
the bond-making structure 4 is stabilized in comparison to 
structure 3. As a result the rate constant of the deuterated species 
is larger (and the KIE is larger than unity). The maximal value 
that the KIE can assume is when the 1,6 bond is fully formed at 
the TS, and then it equals the equilibrium isotope effect (EIE). 
Since such a KIE is mainly sensitive to bond making, it was 
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suggested2b-llc to use In (KIE)/ln (EIE) for a thermoneutral 
reaction (AG = 0), as a measure for the "tightness" of the TS, 
its n value in our notation. 

The potential energy surfaces described above are usually 
quantified51''1 lb'12 as a polynomial in n and n*. Such functions, 
with one free parameter, were usedllb'12 to evaluate the barrier 
heights (TS energies) for cycloadditions and sigmatropic shifts. 
These, unfortunately, did not explain the observed In (KIE)/ln 
(EIE) values. There are also some conceptual difficulties with 
such functions. First, they give a (slightly) different TS energy 
when evaluated from the side of the product than that calculated 
from the side of the reactant. Second,12 they seem to bear no 
resemblance to potential energy surfaces familiar in molecular 
dynamics.16 Third, by postulating such functions, no use is made 
of the known functions depicting the energy profile along the 
RC,17'18 which can realistically describe such profiles on actual 
potential energy surfaces.180 In particular, the perpendicular effect 
as a variation of "intrinsic barriers",17 which are the parameters 
defining reaction series, enters only indirectly.12 

We therefore feel that it may be helpful to introduce an al
ternative mathematical procedure that would be directly related 
to the qualitative features of Figure 1 and would hence provide 
a quantitative description for both the potential energy surface 
and curve-crossing models. It would make direct use of the 
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perpendicular coordinate n* 

o.o 0.5 
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Figure 1. Perpendicular effects on the barrier height by an upside-down 
free energy profile whose minimum is constrained to coincide with the 
height of the barrier. These two extrema are denoted by asterisks. The 
energies are those of reaction 7 in Table I. The two profiles are described 
by eq 5 and 6. AG = G2- G1; AG* = G2 - G1; G1 = 0. 

3 J ^ V ' 

5 

Figure 2. Sigmatropic shift of 1,5-hexadiene. The reaction proceeds from 
structure 1 to structure 2, while structures 3 and 4 are possible inter
mediates. These notations are equivalent to those in Figure 1. The 
concerted path is the RC,«. The perpendicular coordinate is n*. 

available expressions for the energy profile along the RC and 
provide a straightforward recipe for intrinsic barrier variations. 
Finally, it would enable us to fit not only barrier heights but also 
the KIE data. 

Theory 
We present a simple model that may give a quantitative, 

mathematical form to the qualitative behavior demonstrated in 
Figure 1. The input data for the model are the energies of the 
four structures. Since one can set the zero of the energy scale 
arbitrarily (e.g., we put G1 = 0), there are really only three energies 
involved: AG = G2 - G1, AG* = G3 - G4, and G3-G1, which 
equals G3 for G1 = 0. What we want to calculate is the barrier 
height G3 for the lower curve and the well depth Ga* in the upper 
curve. We make three simple assumptions: 

a. The two energy profiles shown in Figure 1 have the same 
functional dependence. In particular, each depends on one pa
rameter, the intrinsic barrier. We denote these two parameters 
by Ga° and Ga°*. Ga° is the barrier height for the lower curve when 
AG = 0. Ga°* is the well depth in the upper curve when AG* = 
0. Note that we have defined AG* to have an opposite sign 
compared to the usual definition (which is final minus initial 
value). This is because we view the upper curve as an upside-down 
reaction coordinate. Stated mathematically, both curves G = 
g(«;Ga°) and G* = g("*;Ga

0*) are given by the same function g. 
As opposed to the conventional assumption17 of a constant intrinsic 
barrier for a reaction series, here both Ga° and Ga°* would depend 
on AG and AG*. 

b. The minimum in the upper curve, at «**, has the same 
energy as the maximum in the lower curve, which occurs at some 
n*. Mathematically, G*(«**;Ga

0*) = G(«*;Ga°). This is clear from 
the potential energy surface model described above, since both 
n* and n** are the location of the col where the TS is located. 
Written explicitly, this becomes 

c. For similar reactions, there is a relation between the two 
intrinsic barriers. For simplicity, we assume that they are pro
portional to each other. We have found that a good fit, which 
produces the results discussed below, is obtained for 

(2) G9
0 = 3G o* 

Using these assumptions, one may derive results at several levels 
of sophistication. In the most primitive version of structure-re
activity correlations, valid for small values of AG and AG*, one 
assumes a linear correlation of kinetics and thermodynamics 

Ga = Ga° + /2AG Ga* = Ga°* + y2AG* (3) 

Inserting this relation into condition 1, while using assumption 
2, leads to an explicit expression for the intrinsic barrier Ga° 

Ga0 = 3A[G3 -
 1A(AG + AG*)] (4) 

which, as we have mentioned above, is generally not constant. The 
final relation for the barrier height Ga is obtained by inserting 
this result into eq 3. 

A more realistic description of the energy profiles is obtained 
in ref 18. The profile is generally described by a linear inter
polation plus a convex function which accounts for the barrier 

G(K) = nAG + Ga°A/(n) (5) 

When the "mixing function" M{n) is an entropy function, 

M(n) = ~[n In n + (1 - n) In (1 - «)]/ln 2 (6) 

the following relations for the barrier height and location are 
obtained 

Ga = -Ga° In (1 - n*)/ln 2 

= [1 + exp(-AG In 2/Ga
0)]" 

(7) 

(8) 

According to our first assumption, the same relations hold for the 
upper curve, i.e., for the quantities with asterisks. The curves 
shown in Figure 1 were actually drawn according to eq 5 and 6. 
In contrast to the simple structure-reactivity model of eq 3, eq 
1 cannot be solved explicitly for the intrinsic barrier Ga°. Instead, 
it has to be solved numerically: Ga° is varied systematically until 
equality in eq 1 is obtained. 

We now show that for profiles given by the general relation 
5, and for symmetric reactions, AG = 0, one has approximately 

In (KIE)/In (EIE) = «** (9) 

Denoting by 5 changes due to isotopic substitution, we want to 
show that 

5Gfl = n**5AG (10) 

G3 + G * = G, (1) 

The proof would only utilize the general properties of M(ri), 
namely'8b that it is a symmetric function of n, maximal for n = 
' / 2 and zero for n = 0 or 1. 

As discussed in the introduction, isotopic substitutions on 
carbons 1 and 6 stabilize structures 2 and 4, where a 1,6 bond 
is present, to a larger extent than structures 1 and 3. Hence 5AG 
is negative and equals -5AG*, while 5G3 = 0. (G3 is actually the 
energy difference between G3 and G1, the latter being defined as 
zero.) Equation 1 now implies that 5Ga* = -5Ga. The variation 
of eq 5 at its extremum («* or «**), together with the above-
mentioned conditions, yields 

5Ga = 5Ga
0 + /25AG (Ha) -

5Ga* = -«**5AG + M(«**)5Ga°/3 ( l ib) 

In eq 1 la we have used the fact that when AG = 0, n* = ! / 2 and 
M(l/2) = 1." Consider now two possible situations. If «** is 
close either to 0 or to 1, M(n**) is close to zero, so that the equality 
of 5Ga and -5Ga* gives the desired result, eq 10. If «** is close 

(19) Note that a variation with respect to n (n*) vanishes by definition at 
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Table I. Application of the Model to Sigmatropic Shifts and Cycloadditions to Cyclopentadiene (All Energies in kcal/mol) 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 
11. 
12. 
13. 

14. 
15. 
16. 
17. 
18. 
19. 
20. 

sigmatropic shifts 
1,5-hexadiene 
2-phenyl-1,5-hexadiene 
2,5-diphenyl-1,5-hexadiene 
3,3-dicyano-1,5-hexadiene 
3,4-dimethyl-1,5-hexadiene 
3,4-diphenyl-1,5-hexadiene 
cis-1,2-divinylcyclobutane 
ally] vinyl ether 
allyl phenyl ether 
allyl acetate 
cis-1,2-divinylcyclopropane 
allyl silyl enol acetate 
3-oxyanion-1,5-hexadiene 

cycloadditions 
ethylene 
acrylonitrile 
fumaronitrile 
maleonitrile 
1,1-dicyanoethylene 
1,1,2-tricyanoethylene 
1,1,2,2-tetracyanoethylene 

data11" 

AG 

0.0 
0.0 
0.0 

-4.5 
-4.5 
-4.5 

-19.0 
-17.0 

5.0 
0.0 

-20.0 
-20.0 
-19.0 

-20.0 
-20.0 
-20.0 
-20.0 
-20.0 
-20.0 
-20.0 

AG* 

4 
15 
26 

-16 
0 

-18 
-26 

-6 
-22 
-15 
-18 

-6 
-27 

0 
9 
0 
0 

18 
9 
0 

G3 

57 
57 
57 
37 
53 
35 
34 
47 
47 
52 
35 
47 
26 

40 
40 
31 
31 
40 
31 
22 

intrinsic 
barriers 

G1
0 Ga°« 

41.2 
36.0 
29.0 
34.0 
41.4 
32.8 
38.6 
43.3 
39.3 
43.6 
38.3 
44.3 
32.1 

36.8 
32.9 
29.9 
29.9 
27.7 
25.8 
22.9 

41.2 
37.1 
33.0 
35.4 
41.4 
34.7 
42.4 
45.4 
41.6 
44.6 
40.5 
44.2 
36.7 

37.5 
34.1 
30.7 
30.7 
30.7 
27.4 
24.0 

a 

41.0 
35.5 
31.0 
32.0 
39.0 
31.0 
28.0 
33.0 
42.0 
45.0 
21.0 
25.0 
26.0 

30.0 
24.0 
21.3 
21.1 
17.8 
16.3 
13.9 

b 

41.2 
36.3 
30.1 
31.6 
38.7 
30.6 
28.6 
33.6 
43.2 
43.9 
27.5 
33.0 
23.4 

27.7 
23.8 
20.6 
20.6 
18.9 
16.6 
13.7 

barrier heights 

Ga 
C 

40.9 
34.5 
27.0 
27.8 
36.8 
26.5 
22.4 
27.9 
43.9 
44.5 
20.0 
26.6 
24.9 

28.9 
24.0 
20.1 
20.1 
18.3 
15.3 
11.4 

d 

41.2 
36.0 
29.0 
31.8 
39.2 
30.6 
29.9 
35.4 
41.9 
43.6 
29.2 
35.0 
23.6 

27.7 
23.9 
21.1 
21.1 
19.0 
17.1 
14.4 

e 

41.2 
37.1 
33.0 
33.2 
39.2 
32.5 
32.9 
35.4 
44.1 
44.6 
30.5 
34.2 
27.2 

27.5 
24.1 
20.7 
20.7 
20.7 
17.4 
14.0 

G* 

15.8 
21.1 
28.0 

5.2 
13.8 
4.4 
4.1 

11.6 
5.1 
8.3 
5.9 

11.9 
2.5 

12.3 
16.1 
10.0 
10.0 
21.1 
13.9 
7.6 

extremum 
location 

n* «*' 

0.50 
0.50 
0.50 
0.48 
0.48 
0.48 
0.42 
0.43 
0.52 
0.50 
0.41 
0.42 
0.40 

0.41 
0.40 
0.39 
0.39 
0.38 
0.37 
0.35 

0.55 
0.70 
0.87 
0.27 
0.50 
0.24 
0.20 
0.43 
0.24 
0.33 
0.27 
0.43 
0.15 

0.50 
0.64 
0.50 
0.50 
0.79 
0.67 
0.50 

In (KIE)/ 
In (EIEy 

0.64 
0.75 
0.87 
0.25 

" Experimental data as collected from literature in ref 1 
'Present work, simplified version, eq 3 and 4. ^Data of ref 

lb. sGajewski's calculation.llb 'Murdoch's 
1 la,c. EIE is KIE ratio for the forward and 

calculation.12 ^Present work, full model, 
reverse reactions. 

to xj2, eq 11 implies that SGa° = 0, again leading to the result in 
eq 10. As a conclusion we have shown that for AG = 0, eq 9 is 
approximately obtained for any value of «**. 

Results 
Results shown in Table I are for sigmatropic shifts and cy

cloadditions. The first three columns show the input data for the 
calculation, taken from ref l ib . The next two columns give the 
intrinsic barrier as calculated from the full model and from the 
simplified expression in eq 4. The next five columns give the 
barrier height according to experiment, the two models in the 
literature, and our full and simplified versions. Next come results 
from our full calculation for the well depth on the upper curve 
and the two parameters which determine the TS location. Finally 
we show the experimental estimate for In (KIE) /In (EIE). 

From this table we see that our calculation of the barrier height, 
Ga, shows on the average the same quality of agreement with 
experiment as the two models in the literature.llb'12 The fact that 
all models are equally good in this respect is not surprising in view 
of the fact that even our very simplified model, eq 3 and 4, gives 
almost as good results. Roughly speaking, it differs from the full 
calculation by 0.1(AG + AG*). This number is significant only 
for a few entries, such as 3, 7, 9, and 13, where usage of this version 
increases the error by 2-4 kcal/mol. In one case (entry 13), the 
simplified version is even better, probably due to some cancellation 
of errors. 

Finally, an agreement not obtained by any other model is seen 
in the comparison of the experimental values for In (KIE)/In (EIE) 

with our calculation of «**, for the first four entries, which are 
nearly symmetric reactions. The agreement is not completely 
quantitative for all reactions, but the qualitative trends in the 
"tightness" of the TS are clearly there. 

Conclusion 
We have shown that it is possible to generalize the models for 

energy profiles along the RC by adding an upside-down profile 
which describes the energy perpendicular to the RC. We have 
introduced three simple assumptions relating these two curves. 
The only assumption that is not intuitively evident is the pro
portionality of the two intrinsic barriers. This assumption should 
be further tested in the future. The assumptions enabled us to 
explain in a self-consistent way both Hammond and anti-Ham
mond effects. For the instructive example of cycloadditions and 
sigmatropic shifts, we were able to explain trends in barrier height 
variations, in two levels of sophistication, and, for the first time, 
demonstrate a semiquantitative agreement with KIE results as 
well. 
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